

Tire testing at real driving conditions and at the test stand

Intelligent Tire Technology 26 – 28 September 2011 Darmstadt

Motivation

- Measurement Equipment
- Approach
- Test description
- Results
- Conclusions

Motivation

- The demand to higher efficiency concerns each component of future vehicles
- Tire resistance is one of the areas for efficiency improvements independent of vehicle drive concepts
- Understanding the behavior in real road conditions will become more important
- Standard testing methods (drum based) do not deliver road condition related information
- Tire resistance value is relative low
- Real road conditions measurement was suffering from:
 - Accurate measurement equipment for the forces
 - Ability to separate different influence sources
 - Low repeatability

Measurement Equipment on Road

- Vehicle measurement System (VMS)
 - -Wheel Force Sensor(WFS)
 - Wheel Position Sensor (WPS)
 - Other sensors such as GPS
 - Vehicle ECU Information

Rig Measurement Equipment

- Flat belt tire testing rig (steel belt)
 - Best simulation of the road
- Test is performed with the same sensor used for the vehicle testing

Rig Specification	
Velocity	0~200km/h
Slip Angle	±20deg(0~3Hz)
Camber Angle	±15deg(0~1Hz)
Up & Down	0~50mm(0~25Hz
Load	Fx: ±10 kN Fy: ± 10 kN Fz: 12 kN
Flatness of the steel belt (under load condition)	Less than 10 µm
Bearing under the belt	Air bearing

Wheel Force Sensor (WFS)

6 component in wheel force sensor main properties

- 3 axis of force and 3 axis of moment
- 0.1% Resolution
 - -6N or 1.8Nm
- Capacity:
 - -Fx = 24KN, Fy = 15KN, Fz = 24KN
 - Mx= 4.5 KNm, My =4 KNm, Mz = 4.5KNm
- Data acquisition up to 1kHz
- Lightweight 3.2 Kg

Unique Force Detection Method

- Model Based Sensor concept
- Shared force detection method
 - Eight bridges are applied to the spring element
 - No direct detection of each component
 - Components are re-composed by model based calculation using real time calculation DSP platform
 - Digital conversion of all signals and electronically re-composing overcomes disadvantages of analogue approach
 - Cross talk error can be canceled out

Minimized Temperature effects

- Vehicle measurement is a challenge for the temperature influence
 - Temperature gradient e.g. break side outside
 - -Quick change of temperature depending on driving maneuver
- Robust design against Temperature effects
 - Share Force method allows to place the strain gauges very close to each other
 - Total gradient on each gauges is very small
 - Small temperature effect on the measurement
 - At the same time robustness against dynamic temperature changes

Mechanical and Electrical sensitivity

- Stiff sensor design for high accuracy
- Sensor sensitivity:
 - Mechanical sensitivity x electrical sensitivity
- Stiff Spring element design
 - Increase of robustness
 - Increase of eigenfrequency
 - Reduction of mechanical sensitivity
- Increase electrical sensitivity
 - High precision A/D converting of nV order A/D conversion
 - Low noise design from less analog circuit
 - Optimized temperature compensation from gauge layout
- The combination of all technology results in a high accurate sensor with 1/4000 resolution

Wheel Force Sensor Configuration

Tire Loss Theory

- Tire loss can be calculated from measured parameters on the wheel
- Measurement parameters
- Tire rolling inertia
 Jt in kg·m²
- Tire effective radius
 r_t in m
- Wheel torque My in Nm
- Tire longitudinal force Fx in N
- Tire Angular speed ω in rad/s
- Tire Angular acceleration ώ rad/s²
- Calculated parameter
 - Tire loss (rolling resistance) Rx in N

 $R x = \frac{My + Jt * \dot{\omega}}{r_t} - Fx$

7. Intelligent Tire Technology

Driven Wheel

Parameter determination: Wheel inertia

- Tire rolling inertia is premeasured using free load rotating wheel in acceleration and deceleration condition
 - Measurement items
 - Tire angular speed ω [rad/s]
 - Angular acceleration ώ [rad/s²]
 - Wheel torque My_{free} [Nm]
 - Rolling inertia formula:

- 50 50

0

AngleAccele [rad/s²]

50

100

Testing procedure on the test track

- Target: Determine "Tire Loss" from real driving condition
- Test car: BMW Mini Cooper S
- Test Track:
- Total length: 1,792m
- East straight line: 550m
- West straight line: 554m
- Driving Maneuver:
 - Acceleration at west straight line
 - Cost down at East straight line
 - Test laps: 10 laps
- 100Hz data acquisition

Test Track Measurement Results

Angular acceleration determination

- Tire angular speed is measured from sensor angle encoder.
- Tire angular acceleration is calculated from angular speed signal by time derivative
- Measurement item:
 - Tire angular speed
 ω [rad/s]

 $\dot{\omega} = \frac{\mathrm{d}\omega}{\mathrm{d}t} \left[rad / s^2 \right]$

7. Intelligent Tire Technology

Tire angular acceleration

Tire radius determination

- Tire mean radius is calculated from vehicle velocity and tire angular speed.
- Vehicle velocity is measured from optical Doppler sensor
- Instant tire mean radius is measured.
- Measurement items
 - Vehicle velocity against road Vph [m/s]
 - Tire angular speed
 ω [rad/s]
- Tire radius formula

 (Not considering tire slip)
 rt = <u>Vph</u> [m]

 ω

Measurement parameter: Wheel torque and longitudinal force

Tire Loss determination (Rolling Resistance)

Rear Left Wheel results

- Average Rx: Rx = -76.1N (Acceleration), Rx = -72.8N (Cost down)
- 10 laps data variation 3σ : 2.8N (Acceleration), 3.6N (Cost down)
- Rx for Acceleration and Rx for Cost down data are very close to each other: 3.3N

Rear Right Wheel results

- Average Rx: Rx = -87.6N (Acceleration). Rx = -82.6N (Cost down)
- 10 laps data variation 3σ: 2.5N (Acceleration)., 6.6N (Cost down)
- Rx for Acceleration and Rx for Cost down data are very close to each other: 5.0N

Measurement result : Test rig

Wheel Load & Tire Rotational Speed 6000 Test condition Load Speed ||150 4000 Speed[rad/s] • Slip angle :0 [deg] Force[N] 2000 00 Camber angle: 0 [deg] • Wheel driven by steel belt - 2000 • Vertical load Fz: 1kN, 2kN, 5kN 100 50 Time[s] • Static velocity: 5km/h, 10km/h, **Rolling Resistance** 20km/h, 60km/h, 80km/h, 120km/h Resistance[N] ∃ B Fz1kN - 20 ⊖ ⊖ Fz2kN Rolling resistance is directly measured 🔺 🔺 Fz5kN - 40 from Fx - 60 Rolling resistance is proportional to the vertical load and is not a function of - 80 10 100 1×10^{3} Velocity[km/h] velocity **Rolling Resistance** Rolling resistance at 2.7kN is 42N <u>→</u> 005km/h) ⊖ 010km/h Resistance[N] 🛆 020km/h 040km/h 080km/h ▲▲ 120km/h - 80 1000 2000 3000 4000 5000 Fz[N] 7. Intelligent Tire Technology

Comparison: Real road vs Test rig

- Real road rolling resistance :
- Rx(Left) = 74 N
- Rx(Right) = 82 N

Test rig:

• Rx = 42 N

Reasons for the difference:

- Tire alignment
- Road surface condition
- Environment conditions
 - Wind force to tire
 - Temperature
- Measurement errors
 - Tire effective radius measurement

Conclusion

- A&D Sensor delivers high quality data
- It was possible to measure the tire loss (rolling resistance) during real driving condition
- Great match on the measurement though 10 laps of data
- Rolling resistance measurement result is depending on driving conditions
 - There is a different between acceleration and cost down conditions
- Useful measurement for analyzing energy loss value at real driving condition
- There are differences between road and test rig results

AD

Thank you for your attention!

Measurement System

7. Intelligent Tire Technology

EWPS